

United States Geological Survey Certificate of Analysis

Syenite STM-1

A sample of peralkaline nepheline syenite was collected from a sill that underlies Table Mountain which is approximately 60 km WNW of Eugene, Oregon. The rock sample was light to medium gray and had a glassy luster. The material was holocrystalline and very fine to fine grained, having a very pronounced trachytic texture (Flanagan, 1976).

Element concentrations were determined by cooperating laboratories using a variety of analytical methods. Certificate values are based primarily on international data compilations (Abbey, 1983; Gladney and Roelandts, 1988; Govindaraju, 1994). Initial USGS studies (Flanagan, 1976) provide background information on this material.

Recommended values

Oxide	Wt	%	±	ı	Oxide	Wt %	6	±
SiO_2	59.6		0.49	CaO		1.09		0.06
$Al_2\tilde{O}_3$	18.4		0.23	MgO		0.10		0.02
$Fe_2^2O_3^3$	2.87		0.02	Na ₂ O		8.94		0.20
FeO 3	2.09		0.03	K_2^2 O		4.28		0.07
Fe_2O_3T	5.22		0.1	$P_2^2O_5$		0.16		0.01
2 3				TiO_2^3		0.14		0.01
Element	μg/g	±	Element	μg/g	±	Element	μg/g	±
Ba	560	60	Gd	9.5	0.8	Sm	13	1
Be	9.6	0.6	Hf	28	2	Sr	700	30
Ce	260	18	La	150	6	Ta	19	1.2
C1	460	40	Mn	1700	120	Tb	1.6	0.2
Cs	1.5	0.1	Nb	270	12	Th	31	3
Dy	8.1	0.5	Nd	79	7	U	9.1	0.1
Er	4.2	0.4	Pb	18	1.8	Y	46	5
Eu	3.6	0.3	Rb	118	6	Yb	4.4	0.4
F	910	50	Sb	1.7	0.2	Zn	235	22
Ga	35	5	Sc	0.61	0.07	Zr	1210	120
Element	μg/g		Element	μg/g		Element	μg/g	
Ag	0.08		Co	0.9		Ni	3	
As	4.6		Cr	4.3		S_{tot}	43	
В	6.4		Cu	4.6		$\operatorname{Sn}^{\operatorname{tot}}$	6.8	
Bi	0.13		Li	32		Tm	0.7	
Cd	0.27		Mo	5.2		V	8.7	

Denver, Colorado revised March 1995 David B. Smith Branch of Geochemistry

Glossary

Fe_2O_3T	Total iron expressed as Fe ₂ O ₃
S _{tot}	Total concentration of sulfur

Wt % Percent of total element concentration

 $\mu g/g$ Total element concentration expressed as micrograms of element

per gram of solid sample

± One standard deviation

Notes

Unless otherwise indicated total element concentrations are reported for material on an asreceived basis, i.e., no drying.

Ordering Information

This reference material is no longer available.

Dr. Stephen A. Wilson Tel: 303-236-2454

U.S. Geological Survey FAX: 303-236-3200 or 303-236-1425

Box 25046, MS 964 e-mail: swilson@usgs.gov

Denver, CO 80225